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I. Context 
Computing planar maps is a very old problem that has occupied geographers and mathematicians 

for centuries in order to best describe the earth at different scales. As a curved surface is stretched 
and sheared into the plane, the flat representation of countries or continents are no longer faithful to 
their original shapes. In this sense, there are no perfect maps, and any maps introduce a certain 
amount of distortion.  

 
Idea. We propose to study the set of mappings which are entirely free from shear. Such maps only 

allow independent stretching in two (or three) orthogonal 
directions. Inspired by materials science, we refer to them as 
“orthotropic” maps. Intuitively, on a planar domain, we 
define at each point a reference frame aligned with the 
global refence system and locally attached to the material. 
Our degrees of freedom are the rotation of these frames and 
the independent scaling of the two vectors. This deformation 
of the domain transforms infinitesimal squares, initially 
aligned with the reference frames, into infinitesimal 
rectangles. This property is essential in applications such as 
mesh generation as discussed in Section III. 

 
Challenges. The goal of this thesis is to develop a framework to study and to numerically compute 

orthotropic mappings with a particular focus on volumetric maps and atlases. 

II. Methodology 
In order to theoretically study orthotropic deformations, we use Cartan’s method of moving frames 

[1]. The main idea is to define a system of orthogonal frames and scale functions that smoothly evolve 
in domain of arbitrary dimension and to characterize when they infinitesimally define a valid 
deformation. More precisely, let 𝑓:ℝ! → ℝ! be a planar orthotropic map, then its Jacobian must be 

such that ∇𝑓 = '𝑒
" 0
0 𝑒#*𝐸

$ , where 𝐸:ℝ! → 𝑆𝑂(2)  is a rotation field and 𝑎, 𝑏:ℝ! → ℝ  are the 

scaling functions. The map is then locally characterized by the necessary condition: ∇ × ∇𝑓 = 0. We 
can rewrite this equation to fully express the infinitesimal rotation, which relates two infinitesimal 
close rotations 𝐸 in terms of 𝑎, 𝑏  and 𝐸 . This necessary (and sufficient in many useful cases) 
integrability condition is linear with respect to 𝑎 and 𝑏. 

To make this theoretical analysis useful for applications, the student will work on the following 
tasks: 
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Task 1: Orthotropic parametrizations of surfaces. The first step is to explore the theoretical 
foundations of orthotropic deformations for surfaces. The goal is to discretize and efficiently solve the 
non-linear integrability equation.  

Task 2: Orthotropic mapping in volumes. The integrability condition for the existence of an 
orthotropic map can be easily extended to the volumetric case. However, this additional dimension 
introduces new challenges. 3D rotations are no longer commutative making the optimization 
significantly more difficult, and as a result, our solver for surface maps may become obsolete.  

Task 3: Beyond orthotropy. Discover which maps can be computed while keeping two key 
properties: a characterization by a small number of meaningful parameters and convergence under 
refinement to an injective map.  

III. Orthotropic map applications for remeshing 
In a modern version of the mapping problem, surfaces are represented by triangle meshes and the 

flat representation is not only used for information storage (texture, normal). In particular, by 
computing a cleverly constrained map to the plane and by overlying a regular grid in parameter space, 
we obtain a decomposition of the original surface into quadrangles (see Figure 1). This transformation 
of triangle mesh to a quadrangle mesh proves to be quite challenging but very useful in practice. 

 

 
Anisotropic remeshing. The objective of quad (or hex) remeshing is to generate a mesh that 

accurately approximate a target geometry while maintaining a fixed number of elements. When 
approximating a surface using a quad mesh, theoretical findings indicate that the edges should align 
with the principal (orthogonal) curvature directions, and the 
aspect ratio of the elements should be in proportion to the ratio 
of the principal curvatures [2] as in the inset figure. This result is a 
quite intuitive because regions with high curvature demand 
smaller elements for a precise approximation. Similarly, to reduce 
numerical errors in numerical simulations, the mesh should be 
denser in areas where the expected solution exhibits significant 
variations and less dense in areas where the solution is nearly flat. 
The theory suggests that the most accurate quad (or hex) mesh 
must have edges aligned with the (orthogonal) eigenvectors of the 
function’s Hessian [3]. Clearly, both aspects of the approximation 
problem can be addressed by meshes with rectangular (or 
rectangular cuboid) elements, which can be extracted from an 
orthotropic map. 

 

Figure 1: The quad meshing algorithm. Given a triangle mesh (a), a frame field is computed (b) defining the singularity 
position (black dot). The mesh is cut along the frame discontinuities (red line) and mapped to a grid aligned domain (c). The 
inverse deformation is applied to produce a quad mesh (d). This project aims at computing the map f and the singularity 
positions directly with the help of orthotropic maps. 
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Numerical simulation. It is well-known that the finite element method exhibits improved 
convergence properties when elements approach perfect squares or cubes, and the convergence is 
not guaranteed in the presence of non-convex elements [4]. By enforcing rectangular elements 
through orthotropic mappings, we not only avoid non-convexity but also fulfill the requirements for 
the optimal convergence of the popular finite elements [5]. 

Our colleagues at CEA conducts numerous numerical 
simulations using quad and hex meshes, with a particular focus 
on boundary layer simulations that necessitate highly anisotropic 
elements to capture extreme physical phenomena in directions 
normal to the boundary (for example, Apollo 11 entering the 
atmosphere). In their current workflow, users manually remesh 
their models according to their specific needs, which is a time-
consuming process, often taking weeks for an engineer to obtain 
the desired mesh. The CEA is actively engaged in research to 
reduce the user input during mesh generation. Orthotropic maps 
present a promising solution to address some of these 
challenges. 

IV. Application and starting date 
The PhD position starts at the latest in autumn 2025. The candidate must hold a master in computer 

science or in applied mathematics. Typically, a candidate with knowledge in differential geometry 
or/and finite element method is appreciated. This PhD offers the opportunity to visit (and work with) 
Franck Ledoux from CEA and Keenan Crane from Carnegie Mellon University. Applications can be sent 
in either French or English. To apply for the position, please send a CV to etienne.corman@cnrs.fr. 
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